Hydrodechlorination of Silicon Tetrachloride to Trichlorosilane Over Ordered Mesoporous Carbon Catalysts: Effect of Pretreatment of Oxygen and Hydrochloric Acid.

نویسندگان

  • Do-Hwan Kwak
  • M Shaheer Akhtar
  • Ji Man Kim
  • O Bong Yang
چکیده

This paper reports on the catalytic reaction for the conversion of silicon tetrachloride (STC) to trichlorosilane (TCS) over pretreated ordered mesoporous carbon (OMC) catalysts by oxygen (denoted as OMC-O2) and hydrochloric acid (denoted as OMC-HCl) at 300 degrees C under N2 atmosphere. The OMC-O2 shows significantly improved the surface area (1341.2 m2/g) and pore volume (1.65 cm3/g), which results in the highest conversion rate of 7.3% as compared to bare OMC (4.3%) and OMC-HCI (5.7%). It is found that the conversion rate of STC to TCS is proportional to the number of Si-O bond over OMC catalysts, which suggests that Si-O-C bond formation is crucial to the reaction as active sites. The O2 pretreatment seems to promote the generation of oxygenated species for the formation of Si-O-C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steam Treated Ordered Mesoporous Carbon Nanomaterials for Catalytic Conversion of Silicon Tetrachloride to Trichlorosilane.

The steam-pretreatment on ordered-mesoporous carbon (OMC) catalysts was conducted to improve the catalytic properties for silicon tetrachloride (STC) to trichlorosilane (TCS) conversion. The surface area, pore size and pore volume of OMC were significantly changed as a function of pretreatment temperature. The steam-pretreated OMC at 500 degrees C exhibited the high surface area (-1476.4 m2/g) ...

متن کامل

The Effect of Mesoporous Carbon Nitride Modification by Titanium Oxide Nanoparticles on Photocatalytic Degradation of 1,3-Dinitrobenzene

In the present work, well ordered, mesoporous carbon nitride (MCN) sorbent with uniform mesoporous wall, high surface area and pore volume has been fabricated using the simple polymerization reaction between ethylene diamine and carbon tetrachloride in mesoporous silica media, and then modified by TiO2 nanoparticles (Ti-MCN). The structural order and textural properties of the nanoporous materi...

متن کامل

Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts.

A coordination-assisted synthetic approach is reported here for the synthesis of highly active and stable gold nanoparticle catalysts in ordered mesoporous carbon materials using triblock copolymer F127 as a structure-directing agent, thiol-containing silane as a coordination agent, HAuCl4 as a gold source, and phenolic resin as a carbon source. Upon carbonization, the gold precursor becomes re...

متن کامل

Design and Preparation of Electrocatalysts Based on Ordered Mesoporous Carbons for Oxygen Reduction Reaction

The research presented in this dissertation is aimed at the development of electrocatalysts for the oxygen reduction reaction (ORR) based on ordered mesoporous carbons (OMCs). The ORR is a key reaction in electrochemical energy devices such as fuel cells and metal-air batteries. Because of its sluggish kinetics compared to its counterpart reaction (i.e., hydrogen oxidation reaction in fuel cell...

متن کامل

Three-dimensional ordered mesoporous Co3O4 enhanced by Pd for oxygen evolution reaction

Considerable efforts have been devoted recently to design and fabrication of high performance and low cost electrocatalysts for oxygen evolution reaction (OER). However, catalytic activity of current electrocatalysts is usually restricted by high onset potential and limited active sites. Herein, we fabricated three-dimensional (3D) highly ordered mesoporous Pd-Co3O4 composite materials as excel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2016